zig/lib/compiler_rt/rem_pio2_large.zig
Andrew Kelley ec95e00e28 flatten lib/std/special and improve "pkg inside another" logic
stage2: change logic for detecting whether the main package is inside
the std package. Previously it relied on realpath() which is not portable.
This uses resolve() which is how imports already work.

 * stage2: fix cleanup bug when creating Module
 * flatten lib/std/special/* to lib/*
   - this was motivated by making main_pkg_is_inside_std false for
     compiler_rt & friends.
 * rename "mini libc" to "universal libc"
2022-05-06 22:41:00 -07:00

507 lines
20 KiB
Zig

// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/__rem_pio2_large.c
const std = @import("std");
const math = std.math;
const init_jk = [_]i32{ 3, 4, 4, 6 }; // initial value for jk
///
/// Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
///
/// integer array, contains the (24*i)-th to (24*i+23)-th
/// bit of 2/pi after binary point. The corresponding
/// floating value is
///
/// ipio2[i] * 2^(-24(i+1)).
///
/// NB: This table must have at least (e0-3)/24 + jk terms.
/// For quad precision (e0 <= 16360, jk = 6), this is 686.
const ipio2 = [_]i32{
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,
0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,
0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C,
0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4,
0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7,
0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19,
0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16,
0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6,
0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,
0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3,
0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55,
0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612,
0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC,
0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,
0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4,
0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB,
0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C,
0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F,
0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437,
0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B,
0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD,
0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3,
0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,
0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F,
0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB,
0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51,
0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C,
0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,
0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED,
0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328,
0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0,
0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B,
0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3,
0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F,
0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B,
0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4,
0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,
0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30,
0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E,
0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1,
0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4,
0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,
0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9,
0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4,
0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C,
0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0,
0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0,
0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC,
0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893,
0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7,
0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,
0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4,
0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B,
0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2,
0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E,
0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,
0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9,
0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D,
0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855,
0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569,
0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE,
0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41,
0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F,
0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110,
0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,
0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A,
0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,
0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,
0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
};
const PIo2 = [_]f64{
1.57079625129699707031e+00, // 0x3FF921FB, 0x40000000
7.54978941586159635335e-08, // 0x3E74442D, 0x00000000
5.39030252995776476554e-15, // 0x3CF84698, 0x80000000
3.28200341580791294123e-22, // 0x3B78CC51, 0x60000000
1.27065575308067607349e-29, // 0x39F01B83, 0x80000000
1.22933308981111328932e-36, // 0x387A2520, 0x40000000
2.73370053816464559624e-44, // 0x36E38222, 0x80000000
2.16741683877804819444e-51, // 0x3569F31D, 0x00000000
};
fn U(x: anytype) usize {
return @intCast(usize, x);
}
/// Returns the last three digits of N with y = x - N*pi/2 so that |y| < pi/2.
///
/// The method is to compute the integer (mod 8) and fraction parts of
/// (2/pi)*x without doing the full multiplication. In general we
/// skip the part of the product that are known to be a huge integer (
/// more accurately, = 0 mod 8 ). Thus the number of operations are
/// independent of the exponent of the input.
///
/// (2/pi) is represented by an array of 24-bit integers in ipio2[].
///
/// Input parameters:
/// x[] The input value (must be positive) is broken into nx
/// pieces of 24-bit integers in double precision format.
/// x[i] will be the i-th 24 bit of x. The scaled exponent
/// of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
/// match x's up to 24 bits.
///
/// Example of breaking a double positive z into x[0]+x[1]+x[2]:
/// e0 = ilogb(z)-23
/// z = scalbn(z,-e0)
/// for i = 0,1,2
/// x[i] = floor(z)
/// z = (z-x[i])*2**24
///
///
/// y[] ouput result in an array of double precision numbers.
/// The dimension of y[] is:
/// 24-bit precision 1
/// 53-bit precision 2
/// 64-bit precision 2
/// 113-bit precision 3
/// The actual value is the sum of them. Thus for 113-bit
/// precison, one may have to do something like:
///
/// long double t,w,r_head, r_tail;
/// t = (long double)y[2] + (long double)y[1];
/// w = (long double)y[0];
/// r_head = t+w;
/// r_tail = w - (r_head - t);
///
/// e0 The exponent of x[0]. Must be <= 16360 or you need to
/// expand the ipio2 table.
///
/// nx dimension of x[]
///
/// prec an integer indicating the precision:
/// 0 24 bits (single)
/// 1 53 bits (double)
/// 2 64 bits (extended)
/// 3 113 bits (quad)
///
/// Here is the description of some local variables:
///
/// jk jk+1 is the initial number of terms of ipio2[] needed
/// in the computation. The minimum and recommended value
/// for jk is 3,4,4,6 for single, double, extended, and quad.
/// jk+1 must be 2 larger than you might expect so that our
/// recomputation test works. (Up to 24 bits in the integer
/// part (the 24 bits of it that we compute) and 23 bits in
/// the fraction part may be lost to cancelation before we
/// recompute.)
///
/// jz local integer variable indicating the number of
/// terms of ipio2[] used.
///
/// jx nx - 1
///
/// jv index for pointing to the suitable ipio2[] for the
/// computation. In general, we want
/// ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
/// is an integer. Thus
/// e0-3-24*jv >= 0 or (e0-3)/24 >= jv
/// Hence jv = max(0,(e0-3)/24).
///
/// jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
///
/// q[] double array with integral value, representing the
/// 24-bits chunk of the product of x and 2/pi.
///
/// q0 the corresponding exponent of q[0]. Note that the
/// exponent for q[i] would be q0-24*i.
///
/// PIo2[] double precision array, obtained by cutting pi/2
/// into 24 bits chunks.
///
/// f[] ipio2[] in floating point
///
/// iq[] integer array by breaking up q[] in 24-bits chunk.
///
/// fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
///
/// ih integer. If >0 it indicates q[] is >= 0.5, hence
/// it also indicates the *sign* of the result.
///
///
///
/// Constants:
/// The hexadecimal values are the intended ones for the following
/// constants. The decimal values may be used, provided that the
/// compiler will convert from decimal to binary accurately enough
/// to produce the hexadecimal values shown.
///
pub fn rem_pio2_large(x: []f64, y: []f64, e0: i32, nx: i32, prec: usize) i32 {
var jz: i32 = undefined;
var jx: i32 = undefined;
var jv: i32 = undefined;
var jp: i32 = undefined;
var jk: i32 = undefined;
var carry: i32 = undefined;
var n: i32 = undefined;
var iq: [20]i32 = undefined;
var i: i32 = undefined;
var j: i32 = undefined;
var k: i32 = undefined;
var m: i32 = undefined;
var q0: i32 = undefined;
var ih: i32 = undefined;
var z: f64 = undefined;
var fw: f64 = undefined;
var f: [20]f64 = undefined;
var fq: [20]f64 = undefined;
var q: [20]f64 = undefined;
// initialize jk
jk = init_jk[prec];
jp = jk;
// determine jx,jv,q0, note that 3>q0
jx = nx - 1;
jv = @divFloor(e0 - 3, 24);
if (jv < 0) jv = 0;
q0 = e0 - 24 * (jv + 1);
// set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk]
j = jv - jx;
m = jx + jk;
i = 0;
while (i <= m) : ({
i += 1;
j += 1;
}) {
f[U(i)] = if (j < 0) 0.0 else @intToFloat(f64, ipio2[U(j)]);
}
// compute q[0],q[1],...q[jk]
i = 0;
while (i <= jk) : (i += 1) {
j = 0;
fw = 0;
while (j <= jx) : (j += 1) {
fw += x[U(j)] * f[U(jx + i - j)];
}
q[U(i)] = fw;
}
jz = jk;
// This is to handle a non-trivial goto translation from C.
// An unconditional return statement is found at the end of this loop.
recompute: while (true) {
// distill q[] into iq[] reversingly
i = 0;
j = jz;
z = q[U(jz)];
while (j > 0) : ({
i += 1;
j -= 1;
}) {
fw = @intToFloat(f64, @floatToInt(i32, 0x1p-24 * z));
iq[U(i)] = @floatToInt(i32, z - 0x1p24 * fw);
z = q[U(j - 1)] + fw;
}
// compute n
z = math.scalbn(z, q0); // actual value of z
z -= 8.0 * @floor(z * 0.125); // trim off integer >= 8
n = @floatToInt(i32, z);
z -= @intToFloat(f64, n);
ih = 0;
if (q0 > 0) { // need iq[jz-1] to determine n
i = iq[U(jz - 1)] >> @intCast(u5, 24 - q0);
n += i;
iq[U(jz - 1)] -= i << @intCast(u5, 24 - q0);
ih = iq[U(jz - 1)] >> @intCast(u5, 23 - q0);
} else if (q0 == 0) {
ih = iq[U(jz - 1)] >> 23;
} else if (z >= 0.5) {
ih = 2;
}
if (ih > 0) { // q > 0.5
n += 1;
carry = 0;
i = 0;
while (i < jz) : (i += 1) { // compute 1-q
j = iq[U(i)];
if (carry == 0) {
if (j != 0) {
carry = 1;
iq[U(i)] = 0x1000000 - j;
}
} else {
iq[U(i)] = 0xffffff - j;
}
}
if (q0 > 0) { // rare case: chance is 1 in 12
switch (q0) {
1 => iq[U(jz - 1)] &= 0x7fffff,
2 => iq[U(jz - 1)] &= 0x3fffff,
else => unreachable,
}
}
if (ih == 2) {
z = 1.0 - z;
if (carry != 0) {
z -= math.scalbn(@as(f64, 1.0), q0);
}
}
}
// check if recomputation is needed
if (z == 0.0) {
j = 0;
i = jz - 1;
while (i >= jk) : (i -= 1) {
j |= iq[U(i)];
}
if (j == 0) { // need recomputation
k = 1;
while (iq[U(jk - k)] == 0) : (k += 1) {
// k = no. of terms needed
}
i = jz + 1;
while (i <= jz + k) : (i += 1) { // add q[jz+1] to q[jz+k]
f[U(jx + i)] = @intToFloat(f64, ipio2[U(jv + i)]);
j = 0;
fw = 0;
while (j <= jx) : (j += 1) {
fw += x[U(j)] * f[U(jx + i - j)];
}
q[U(i)] = fw;
}
jz += k;
continue :recompute; // mimic goto recompute
}
}
// chop off zero terms
if (z == 0.0) {
jz -= 1;
q0 -= 24;
while (iq[U(jz)] == 0) {
jz -= 1;
q0 -= 24;
}
} else { // break z into 24-bit if necessary
z = math.scalbn(z, -q0);
if (z >= 0x1p24) {
fw = @intToFloat(f64, @floatToInt(i32, 0x1p-24 * z));
iq[U(jz)] = @floatToInt(i32, z - 0x1p24 * fw);
jz += 1;
q0 += 24;
iq[U(jz)] = @floatToInt(i32, fw);
} else {
iq[U(jz)] = @floatToInt(i32, z);
}
}
// convert integer "bit" chunk to floating-point value
fw = math.scalbn(@as(f64, 1.0), q0);
i = jz;
while (i >= 0) : (i -= 1) {
q[U(i)] = fw * @intToFloat(f64, iq[U(i)]);
fw *= 0x1p-24;
}
// compute PIo2[0,...,jp]*q[jz,...,0]
i = jz;
while (i >= 0) : (i -= 1) {
fw = 0;
k = 0;
while (k <= jp and k <= jz - i) : (k += 1) {
fw += PIo2[U(k)] * q[U(i + k)];
}
fq[U(jz - i)] = fw;
}
// compress fq[] into y[]
switch (prec) {
0 => {
fw = 0.0;
i = jz;
while (i >= 0) : (i -= 1) {
fw += fq[U(i)];
}
y[0] = if (ih == 0) fw else -fw;
},
1, 2 => {
fw = 0.0;
i = jz;
while (i >= 0) : (i -= 1) {
fw += fq[U(i)];
}
// TODO: drop excess precision here once double_t is used
fw = fw;
y[0] = if (ih == 0) fw else -fw;
fw = fq[0] - fw;
i = 1;
while (i <= jz) : (i += 1) {
fw += fq[U(i)];
}
y[1] = if (ih == 0) fw else -fw;
},
3 => { // painful
i = jz;
while (i > 0) : (i -= 1) {
fw = fq[U(i - 1)] + fq[U(i)];
fq[U(i)] += fq[U(i - 1)] - fw;
fq[U(i - 1)] = fw;
}
i = jz;
while (i > 1) : (i -= 1) {
fw = fq[U(i - 1)] + fq[U(i)];
fq[U(i)] += fq[U(i - 1)] - fw;
fq[U(i - 1)] = fw;
}
fw = 0;
i = jz;
while (i >= 2) : (i -= 1) {
fw += fq[U(i)];
}
if (ih == 0) {
y[0] = fq[0];
y[1] = fq[1];
y[2] = fw;
} else {
y[0] = -fq[0];
y[1] = -fq[1];
y[2] = -fw;
}
},
else => unreachable,
}
return n & 7;
}
}