zig/lib/std/heap/arena_allocator.zig
2020-05-20 16:11:55 -04:00

99 lines
3.8 KiB
Zig

const std = @import("../std.zig");
const assert = std.debug.assert;
const mem = std.mem;
const Allocator = std.mem.Allocator;
/// This allocator takes an existing allocator, wraps it, and provides an interface
/// where you can allocate without freeing, and then free it all together.
pub const ArenaAllocator = struct {
allocator: Allocator,
child_allocator: *Allocator,
state: State,
/// Inner state of ArenaAllocator. Can be stored rather than the entire ArenaAllocator
/// as a memory-saving optimization.
pub const State = struct {
buffer_list: std.SinglyLinkedList([]u8) = @as(std.SinglyLinkedList([]u8), .{}),
end_index: usize = 0,
pub fn promote(self: State, child_allocator: *Allocator) ArenaAllocator {
return .{
.allocator = Allocator{
.reallocFn = realloc,
.shrinkFn = shrink,
},
.child_allocator = child_allocator,
.state = self,
};
}
};
const BufNode = std.SinglyLinkedList([]u8).Node;
pub fn init(child_allocator: *Allocator) ArenaAllocator {
return (State{}).promote(child_allocator);
}
pub fn deinit(self: ArenaAllocator) void {
var it = self.state.buffer_list.first;
while (it) |node| {
// this has to occur before the free because the free frees node
const next_it = node.next;
self.child_allocator.free(node.data);
it = next_it;
}
}
fn createNode(self: *ArenaAllocator, prev_len: usize, minimum_size: usize) !*BufNode {
const actual_min_size = minimum_size + @sizeOf(BufNode);
const big_enough_len = prev_len + actual_min_size;
const len = big_enough_len + big_enough_len / 2;
const buf = try self.child_allocator.alignedAlloc(u8, @alignOf(BufNode), len);
const buf_node_slice = mem.bytesAsSlice(BufNode, buf[0..@sizeOf(BufNode)]);
const buf_node = &buf_node_slice[0];
buf_node.* = BufNode{
.data = buf,
.next = null,
};
self.state.buffer_list.prepend(buf_node);
self.state.end_index = 0;
return buf_node;
}
fn alloc(allocator: *Allocator, n: usize, alignment: u29) ![]u8 {
const self = @fieldParentPtr(ArenaAllocator, "allocator", allocator);
var cur_node = if (self.state.buffer_list.first) |first_node| first_node else try self.createNode(0, n + alignment);
while (true) {
const cur_buf = cur_node.data[@sizeOf(BufNode)..];
const addr = @ptrToInt(cur_buf.ptr) + self.state.end_index;
const adjusted_addr = mem.alignForward(addr, alignment);
const adjusted_index = self.state.end_index + (adjusted_addr - addr);
const new_end_index = adjusted_index + n;
if (new_end_index > cur_buf.len) {
cur_node = try self.createNode(cur_buf.len, n + alignment);
continue;
}
const result = cur_buf[adjusted_index..new_end_index];
self.state.end_index = new_end_index;
return result;
}
}
fn realloc(allocator: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) ![]u8 {
if (new_size <= old_mem.len and new_align <= new_size) {
// We can't do anything with the memory, so tell the client to keep it.
return error.OutOfMemory;
} else {
const result = try alloc(allocator, new_size, new_align);
@memcpy(result.ptr, old_mem.ptr, std.math.min(old_mem.len, result.len));
return result;
}
}
fn shrink(allocator: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) []u8 {
return old_mem[0..new_size];
}
};