mirror of
https://github.com/ziglang/zig.git
synced 2024-11-27 23:52:31 +00:00
0556a2ba53
Finishes cleanups that I started in other commits in this branch. * Use common.linkage for all exports instead of redoing the logic in each file. * Remove pointless `@setRuntimeSafety` calls. * Avoid redundantly exporting multiple versions of functions. For example, if PPC wants `ceilf128` then don't also export `ceilq`; similarly if ARM wants `__aeabi_ddiv` then don't also export `__divdf3`. * Use `inline` for helper functions instead of making inline calls at callsites.
213 lines
6.3 KiB
Zig
213 lines
6.3 KiB
Zig
//! Ported from musl, which is licensed under the MIT license:
|
|
//! https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//!
|
|
//! https://git.musl-libc.org/cgit/musl/tree/src/math/log2f.c
|
|
//! https://git.musl-libc.org/cgit/musl/tree/src/math/log2.c
|
|
|
|
const std = @import("std");
|
|
const builtin = @import("builtin");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
const maxInt = std.math.maxInt;
|
|
const arch = builtin.cpu.arch;
|
|
const common = @import("common.zig");
|
|
|
|
pub const panic = common.panic;
|
|
|
|
comptime {
|
|
@export(__log2h, .{ .name = "__log2h", .linkage = common.linkage });
|
|
@export(log2f, .{ .name = "log2f", .linkage = common.linkage });
|
|
@export(log2, .{ .name = "log2", .linkage = common.linkage });
|
|
@export(__log2x, .{ .name = "__log2x", .linkage = common.linkage });
|
|
const log2q_sym_name = if (common.want_ppc_abi) "log2f128" else "log2q";
|
|
@export(log2q, .{ .name = log2q_sym_name, .linkage = common.linkage });
|
|
@export(log2l, .{ .name = "log2l", .linkage = common.linkage });
|
|
}
|
|
|
|
pub fn __log2h(a: f16) callconv(.C) f16 {
|
|
// TODO: more efficient implementation
|
|
return @floatCast(f16, log2f(a));
|
|
}
|
|
|
|
pub fn log2f(x_: f32) callconv(.C) f32 {
|
|
const ivln2hi: f32 = 1.4428710938e+00;
|
|
const ivln2lo: f32 = -1.7605285393e-04;
|
|
const Lg1: f32 = 0xaaaaaa.0p-24;
|
|
const Lg2: f32 = 0xccce13.0p-25;
|
|
const Lg3: f32 = 0x91e9ee.0p-25;
|
|
const Lg4: f32 = 0xf89e26.0p-26;
|
|
|
|
var x = x_;
|
|
var u = @bitCast(u32, x);
|
|
var ix = u;
|
|
var k: i32 = 0;
|
|
|
|
// x < 2^(-126)
|
|
if (ix < 0x00800000 or ix >> 31 != 0) {
|
|
// log(+-0) = -inf
|
|
if (ix << 1 == 0) {
|
|
return -math.inf(f32);
|
|
}
|
|
// log(-#) = nan
|
|
if (ix >> 31 != 0) {
|
|
return math.nan(f32);
|
|
}
|
|
|
|
k -= 25;
|
|
x *= 0x1.0p25;
|
|
ix = @bitCast(u32, x);
|
|
} else if (ix >= 0x7F800000) {
|
|
return x;
|
|
} else if (ix == 0x3F800000) {
|
|
return 0;
|
|
}
|
|
|
|
// x into [sqrt(2) / 2, sqrt(2)]
|
|
ix += 0x3F800000 - 0x3F3504F3;
|
|
k += @intCast(i32, ix >> 23) - 0x7F;
|
|
ix = (ix & 0x007FFFFF) + 0x3F3504F3;
|
|
x = @bitCast(f32, ix);
|
|
|
|
const f = x - 1.0;
|
|
const s = f / (2.0 + f);
|
|
const z = s * s;
|
|
const w = z * z;
|
|
const t1 = w * (Lg2 + w * Lg4);
|
|
const t2 = z * (Lg1 + w * Lg3);
|
|
const R = t2 + t1;
|
|
const hfsq = 0.5 * f * f;
|
|
|
|
var hi = f - hfsq;
|
|
u = @bitCast(u32, hi);
|
|
u &= 0xFFFFF000;
|
|
hi = @bitCast(f32, u);
|
|
const lo = f - hi - hfsq + s * (hfsq + R);
|
|
return (lo + hi) * ivln2lo + lo * ivln2hi + hi * ivln2hi + @intToFloat(f32, k);
|
|
}
|
|
|
|
pub fn log2(x_: f64) callconv(.C) f64 {
|
|
const ivln2hi: f64 = 1.44269504072144627571e+00;
|
|
const ivln2lo: f64 = 1.67517131648865118353e-10;
|
|
const Lg1: f64 = 6.666666666666735130e-01;
|
|
const Lg2: f64 = 3.999999999940941908e-01;
|
|
const Lg3: f64 = 2.857142874366239149e-01;
|
|
const Lg4: f64 = 2.222219843214978396e-01;
|
|
const Lg5: f64 = 1.818357216161805012e-01;
|
|
const Lg6: f64 = 1.531383769920937332e-01;
|
|
const Lg7: f64 = 1.479819860511658591e-01;
|
|
|
|
var x = x_;
|
|
var ix = @bitCast(u64, x);
|
|
var hx = @intCast(u32, ix >> 32);
|
|
var k: i32 = 0;
|
|
|
|
if (hx < 0x00100000 or hx >> 31 != 0) {
|
|
// log(+-0) = -inf
|
|
if (ix << 1 == 0) {
|
|
return -math.inf(f64);
|
|
}
|
|
// log(-#) = nan
|
|
if (hx >> 31 != 0) {
|
|
return math.nan(f64);
|
|
}
|
|
|
|
// subnormal, scale x
|
|
k -= 54;
|
|
x *= 0x1.0p54;
|
|
hx = @intCast(u32, @bitCast(u64, x) >> 32);
|
|
} else if (hx >= 0x7FF00000) {
|
|
return x;
|
|
} else if (hx == 0x3FF00000 and ix << 32 == 0) {
|
|
return 0;
|
|
}
|
|
|
|
// x into [sqrt(2) / 2, sqrt(2)]
|
|
hx += 0x3FF00000 - 0x3FE6A09E;
|
|
k += @intCast(i32, hx >> 20) - 0x3FF;
|
|
hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
|
|
ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
|
|
x = @bitCast(f64, ix);
|
|
|
|
const f = x - 1.0;
|
|
const hfsq = 0.5 * f * f;
|
|
const s = f / (2.0 + f);
|
|
const z = s * s;
|
|
const w = z * z;
|
|
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
|
|
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
|
|
const R = t2 + t1;
|
|
|
|
// hi + lo = f - hfsq + s * (hfsq + R) ~ log(1 + f)
|
|
var hi = f - hfsq;
|
|
var hii = @bitCast(u64, hi);
|
|
hii &= @as(u64, maxInt(u64)) << 32;
|
|
hi = @bitCast(f64, hii);
|
|
const lo = f - hi - hfsq + s * (hfsq + R);
|
|
|
|
var val_hi = hi * ivln2hi;
|
|
var val_lo = (lo + hi) * ivln2lo + lo * ivln2hi;
|
|
|
|
// spadd(val_hi, val_lo, y)
|
|
const y = @intToFloat(f64, k);
|
|
const ww = y + val_hi;
|
|
val_lo += (y - ww) + val_hi;
|
|
val_hi = ww;
|
|
|
|
return val_lo + val_hi;
|
|
}
|
|
|
|
pub fn __log2x(a: f80) callconv(.C) f80 {
|
|
// TODO: more efficient implementation
|
|
return @floatCast(f80, log2q(a));
|
|
}
|
|
|
|
pub fn log2q(a: f128) callconv(.C) f128 {
|
|
// TODO: more correct implementation
|
|
return log2(@floatCast(f64, a));
|
|
}
|
|
|
|
pub fn log2l(x: c_longdouble) callconv(.C) c_longdouble {
|
|
switch (@typeInfo(c_longdouble).Float.bits) {
|
|
16 => return __log2h(x),
|
|
32 => return log2f(x),
|
|
64 => return log2(x),
|
|
80 => return __log2x(x),
|
|
128 => return log2q(x),
|
|
else => @compileError("unreachable"),
|
|
}
|
|
}
|
|
|
|
test "log2_32" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f32, log2f(0.2), -2.321928, epsilon));
|
|
try expect(math.approxEqAbs(f32, log2f(0.8923), -0.164399, epsilon));
|
|
try expect(math.approxEqAbs(f32, log2f(1.5), 0.584962, epsilon));
|
|
try expect(math.approxEqAbs(f32, log2f(37.45), 5.226894, epsilon));
|
|
try expect(math.approxEqAbs(f32, log2f(123123.234375), 16.909744, epsilon));
|
|
}
|
|
|
|
test "log2_64" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f64, log2(0.2), -2.321928, epsilon));
|
|
try expect(math.approxEqAbs(f64, log2(0.8923), -0.164399, epsilon));
|
|
try expect(math.approxEqAbs(f64, log2(1.5), 0.584962, epsilon));
|
|
try expect(math.approxEqAbs(f64, log2(37.45), 5.226894, epsilon));
|
|
try expect(math.approxEqAbs(f64, log2(123123.234375), 16.909744, epsilon));
|
|
}
|
|
|
|
test "log2_32.special" {
|
|
try expect(math.isPositiveInf(log2f(math.inf(f32))));
|
|
try expect(math.isNegativeInf(log2f(0.0)));
|
|
try expect(math.isNan(log2f(-1.0)));
|
|
try expect(math.isNan(log2f(math.nan(f32))));
|
|
}
|
|
|
|
test "log2_64.special" {
|
|
try expect(math.isPositiveInf(log2(math.inf(f64))));
|
|
try expect(math.isNegativeInf(log2(0.0)));
|
|
try expect(math.isNan(log2(-1.0)));
|
|
try expect(math.isNan(log2(math.nan(f64))));
|
|
}
|